function [g,MG] = rec(n,nup,x,varargin) %% REC Recurrence relation for orthonormal Gram polynomials % % [G] = REC(N,NUP,X) returns the orthonormal Gram polynomial of degree N % and parameter NUP evaluated at vector X. % % [G,MG] = REC(N,NUP,X) also returns the (N+1)-by-size(X) matrix MG with % the Gram polynomials of degrees 0,1,...,N evaluated on X. Its first row % contains the polynomial of degree 0, the second row contains the % polynomial of degree 1 etc. Its first column are the polynomials on % X_1, the second column are the polynomials on X_2 etc. % % REC(N,NUP,X,ALPHA) allows the user furnishes the vector with the % parameters of the recurrence relation: % ALPHA = alpha_0,...,alpha_{n-1} % % % Copyright 2021 by Dimitar K. Dimitrov and Lourenco L. Peixoto % All rights reserved. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % REC implemented by Lourenco L. Peixoto, 2021 - see [1-3]. % % Basic references: % % [1] I. Area, D. K. Dimitrov, E. Godoy, and V. Paschoa, "Approximate % calculation of sums I: Bounds for the zeros of Gram polynomials", SIAM % J. Numer. Anal., 2014. % % [2] I. Area, D. K. Dimitrov, E. Godoy, and V. Paschoa, "Approximate % calculation of sums II: Gaussian type quadrature", SIAM J. Numer. % Anal., 2016. % % [3] D. K. Dimitrov and L. L. Peixoto, "An efficient algorithm for % the classical least squares approximation", SIAM J. Sci. Comput., 2020. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% comp = length(x); if n==0 g = ones(1,comp); if (nargout == 2) MG = g; end elseif n==1 cte = sqrt(3*nup^2/(nup^2-1)); g = cte*x; if (nargout == 2) MG = [ones(1,comp); g]; end else % n>=2 cte = sqrt(3*nup^2/(nup^2-1)); g1 = ones(1,comp); g = cte*x; if ( nargin == 4 ) alpha = varargin{1}; else k=1:n; alpha = sqrt(nup^2*(k.^2-.25)./(k.^2.*(nup^2-k.^2))); end if (nargout == 1) for k=2:n g2 = g1; g1 = g; % initialise for polynomial g = 2*alpha(k)*x.*g1 - alpha(k)/alpha(k-1).*g2; % polynomial end else % stores all the polynomials of degree 0,...,n: MG = ones(n+1,comp); % preallocating MG(2,:) = g; % polynomial of degree 1 for k=2:n % initialise for polynomial: g2 = g1; g1 = g; % polynomial of degree k: g = 2*alpha(k)*x.*g1 - alpha(k)/alpha(k-1).*g2; % polynomial of degree k: MG(k+1,:) = g; end end end end