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AN EFFICIENT ALGORITHM FOR THE CLASSICAL LEAST
SQUARES APPROXIMATION∗
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Abstract. We explore the computational issues concerning a new algorithm for the classical
least-squares approximation of N samples by an algebraic polynomial of degree at most n when the
number N of the samples is very large. The algorithm is based on a recent idea about accurate
numerical approximations of sums with large numbers of terms. For a fixed n, the complexity of
our algorithm in double precision accuracy is O(1). It is faster and more precise than the standard
algorithm in MATLAB.
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1. Introduction. There are various methods for computing reasonable polyno-
mial fits to equally spaced data. These include Hoffman and Reddy’s mock-Chebyshev
interpolation [22], Boyd’s Tikhonov regularization approach [8], and Boyd and Ong’s
multi-interval scheme [9]. For a comprehensive list of methods for approximating
analytic functions from equispaced samples see [25].

The present paper is the final part of a project aimed at designing an efficient
algorithm for the classical least squares approximation problem (CLSAP) for very
large data sets. Given equally spaced mesh points xj , j = 1, . . . , N , and real-valued
data yj = f(xj), one must determine an algebraic polynomial pn(x; f) of degree not
exceeding n, where n is much smaller than N , which minimizes the corresponding l2

norm. More precisely, if Pn denotes the space of real algebraic polynomials of degree
at most n, the CLSAP is the problem of computing pn(x; f) ∈ Pn, such that

(1.1) ‖f − pn(· ; f)‖2 = min
p∈Pn

‖f − p‖2 = min
p∈Pn

N∑
j=1

(f(xj)− p(xj))2 .

Since pn(x; f) is the projection of f onto Pn, it exists and is unique. Moreover, the
best representation of the solution pn is in terms of its Fourier series with respect to
the corresponding orthogonal basis (see [21, Chapter 7]). The latter basis, up to an
affine transformation of the variable x, is given by the orthogonal Gram polynomials.
Without loss of generality, we assume that

(1.2) xj(N) = −1 +
2j − 1

N
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and define the inner product

(1.3) 〈f, g〉N =
1

N

N∑
j=1

f(xj(N)) g(xj(N)),

which, in turn, induces the norm

(1.4) ‖f‖N =

 1

N

N∑
j=1

f2(xj(N))

1/2

.

The polynomials Gk(x;N), k = 0, . . . , N − 1, orthonormal with respect to the above
inner product, are known as the discrete Chebyshev polynomials, or even more com-
monly, the Gram polynomials [6, p. 113]. They are expressed in terms of a hyperge-
ometric function as (see [1, Chapter 2])

(1.5)

Gk(x;N) = (−1)k

√
(2k + 1)(N − k)k

(N + 1)k
3F2

(
−k, k + 1, (1−N −Nx)/2

1, 1−N 1

)

(−1)k

√
(2k + 1)(N − k)k

(N + 1)k

k∑
ν=0

(−k)ν (k + 1)ν ((1−N −Nx)/2)ν
(ν!)2 (1−N)ν

,

where the Pochhammer symbol is defined by (A)ν = A(A+ 1) · · · · · (A+ν−1), ν ≥ 1,
and (A)0 := 1. Using the above notation, the solution of the CLSAP is explicitly
written in the form

(1.6) pn(x; f) =

n∑
k=0

ak Gk(x;N),

where the Fourier coefficients ak are given by

(1.7) ak = 〈f,Gk(· ;N)〉N =
1

N

N∑
j=1

f(xj(N)) Gk(xj(N);N).

The representation of the solution pn(x; f) via (1.6) and (1.7) is well known (see
Chapter 7 of Hildebrand’s book [21]). The idea of constructing an efficient algorithm
for the CLASP by calculating first the coefficients ak from (1.7) and then the solution
pn(x; f) from (1.6) was developed recently in [2, 3]. It is especially efficient in the most
natural situation when the degree n of pn(x; f) is much smaller than N . The algorithm
developed in [3] is reasonably efficient. However, the emphasis in [3] is on the analysis
of the algorithm from a theoretical point of view. Furthermore, the computations in
[3] are done in Mathematica with variable precision. In the present work we suggest
various improvements of the algorithm from [3] and build and develop a new one,
which can be easily implemented in a large variety of programming languages because
we work with double precision. Our routines are written in MATLAB.

The sum (1.7) usually contains a very large number of terms, so [2, 3] used a
“Gaussian type quadrature formula” of the form

(1.8)
1

N

N∑
j=1

F (xj) ≈
m∑
k=1

Bm,k F (gm,k(N)) =: Qm(F ),
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where the nodes gm,k(N) coincide with the zeros of Gm(x;N). However, there are
significant challenges in developing an efficient algorithm for (1.8). Approximating
the zeros of Gm(x;N) is a difficult task. It requires both precise estimates, obtained in
[2], and proving the convergence of the Weierstrass–Dochev–Durand–Kerner (WDDK)
method, established in [3].

In the present note we show that the WDDK method is extremely accurate in
double precision. This is done in section 2, where we analyze and compare various
methods for calculating the nodes as well as the weights of the quadrature formula.

Key computational issues concerning the construction of the approximating poly-
nomial pn(x; f) itself are discussed in section 3. A special emphasis is given on a
procedure aimed at minimizing the effects of the roundoff error.

In section 4 we report the results of a comparison between the new method and
the following “standard” algorithm in MATLAB:1

function c = standard(x,vals,n)

N=numel(vals);

V=zeros(N, n+1);

V(:,1)=ones(N,1,class(x));

for j = 2:n+1

V(:,j)=x.*V(:,j-1);

end

c = V\vals;

end

This algorithm, referred to as the STANDARD in the rest of the paper, constructs
the Vandermonde matrix V of the mesh points xj(N) and then uses the operator \ in
MATLAB to solve the CLSAP via the QR decomposition of V (see [6, section 5.7]).
It turns out that STANDARD is a bit more efficient than the polyfit() command
because lines 65–67 in polyfit() explicitly compute the Q and R factors before calling
\ and there is also error checking as well as global calls to turn warnings on/off.

We use the following errors in the comparisons:

maximum absolute error = max
k=1,...,m

∣∣vk − vtruek

∣∣ ,
maximum relative error = max

k=1,...,m

∣∣∣∣vk − vtruek

vtruek

∣∣∣∣ ,
relative maximum error =

maxk |vk − vtruek |
maxk |vtruek |

.

2. The Gaussian type quadrature for large sums. We briefly review the
ideas in [2, 3] concerning the above-mentioned Gauss type quadrature rule (1.8). It
is exact for all F ∈ P2m−1 and its nodes coincide with the zeros gm,k(N) of the
orthonormal polynomial Gm(x;N). Let us emphasize that in [3] the number of nodes
of (1.8) was chosen to be equal to the degree n of the polynomial best approximation
while here we analyze the more general situation when (1.8) possesses m nodes and
then we choose m appropriately.

It was proved in [3] that all the zeros gm,k(N), k = 1, . . . ,m, can be calculated
simultaneously using the WDDK method [29, 15, 16, 23] with initial approximations
being the nodes of the classical Gaussian quadrature formula, that is, the zeros of
Legendre polynomials. Here we adopt a more straightforward approach and use as

1We thank one of the referees for suggesting this algorithm as the main competitor.
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Fig. 1. The errors of the calculation of Gram’s polynomial and its derivative via the recurrence
relations for m = 60 with N = 103 (left) and 104 (right).

initial approximations for the WDDK method the explicit values suggested by Förster
and Petras [17, Theorem 1]. It turns out that the choice of the WDDK method is
appropriate because the resulting method is better than both the Newton–Raphson
method with the same initial approximations and the celebrated Golub–Welsch (GW)
algorithm [18], adapted for (1.8). Section 2.2 contains all the details concerning the
algorithm for the zeros gm,k(N). The calculation of the weights Bm,k is discussed in
section 2.3, where we compare different ways to compute them. The quadrature is
analyzed in section 2.4. All the methods for calculating the nodes and the weights
of the Gaussian quadrature require calculating the values of Gm and G′m with a high
precision. We analyze such calculations in section 2.1.

2.1. Evaluation of the orthonormal Gram polynomials. It is known that
the orthonormal Gram polynomials are generated by the following recurrence relation:

G0(x;N) = 1, G1(x;N) = 2α0 x,

Gm(x;N) = 2αm−1 xGm−1(x;N)− αm−1
αm−2

Gm−2(x;N), m ≥ 2,(2.1)

where

(2.2) αm−1 =
N

m

(
m2 − 1

4

N2 −m2

) 1
2

, m ≥ 1.

It is easily obtained from the recurrence relation for the corresponding monic polyno-
mials [2, 3]. Unlike the classical continuous orthogonal polynomials [10, 27], the Gram
polynomials do not satisfy a straightforward relation with their derivatives. Instead,
G′m(x;N) is computed by differentiating the recurrence relation above:

(2.3) G′m(x;N) = 2αm−1
(
Gm−1(x;N) + xG′m−1(x;N)

)
− αm−1
αm−2

G′m−2(x;N)

for m ≥ 2 with G′1(x;N) = 2α0 and G′0(x;N) = 0.
Figure 1 shows the error in computing the orthonormal Gram polynomials and

their derivatives via the recurrence relations (2.1) and (2.3). The graphs show that the
results are precise within 14–16 significant digits, both for the values of the polynomial
and its derivative, with a slight loss of accuracy near the end-point 1. That is why
we calculate Gram’s polynomials via the recurrence relation (2.1). We point out that
the values of Gm and G′m in [3] were obtained via a version of Horner’s algorithm [3,
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Table 1
Values of ‖I −QQT ‖. Orthonormality does hold when the orthonormal Gram polynomials are

calculated via the recurrence relation (2.1).

N = 103 N = 104 N = 106

m = 10 4.4409e-16 1.3323e-15 5.5511e-15
m = 60 1.3087e-15 1.9984e-15 5.7732e-15
m = 100 8.2808e-15 4.4409e-15 8.1046e-15

Table 2
Number of iterations required by WDDK method for m = min{b2.5

√
Nc, 100}.

N 250 500 750 103 104 105 106 107 108 109 1010

# iterations 7 7 7 7 4 3 3 3 3 3 3

Algorithm 1]. As mentioned in the introduction, the calculations reported in [3] were
performed using symbolic software which uses arbitrary-precision numbers. Unfortu-
nately, the so modified Horner algorithm accumulates roundoff errors, especially close
to one of the end-points ±1, when the calculations are performed in double-precision
floating-point numbers.

In order to test numerically the orthonormality of the Gram basis obtained in
this manner, we calculate the values of ‖I −QQT ‖, where

(2.4) Q =
1√
N

 G0(x1;N) . . . G0(xN ;N)
...

. . .
...

Gm(x1;N) . . . Gm(xN ;N)


and the norm ‖ · ‖ is the largest absolute value of the entries of the corresponding
matrix. See Table 1.

2.2. The nodes. The formulae for calculating the nodes of the quadrature via
the iterative WDDK method are given by [3, eq. (3.1)]. Here we apply them with the
orthonormal polynomials in place of the monic ones.

The convergence of the WDDK method for the zeros of Gm(x;N) was established
rigorously in [3, Theorem 3.1] in the case when the initial approximations are the
zeros of the Legendre polynomials Pm(x). We have tested the convergence of the
WDDK method with the initial conditions, used by Förster and Petras [17, Theorem
1] to approximate the zeros of Pm(x). It converges when m ≤ min{b2.5

√
Nc, 100}

and N runs from 10 to 1010. Existing results (see [5] and [6, p. 114]) recommend
that m ≤ 2.5

√
N . Moreover, for any fixed m, the zeros of Gm(x;N) converge to the

zeros of Pm(x), as N →∞, so those initial approximations are quite efficient indeed.
Therefore, we use the initial approximations from [17, Theorem 1] for the WDDK
method.

Table 2 shows the number of iterations required by WDDK. In all cases the zeros
are obtained with high accuracy in double precision.

We have compared the WDDK method with the Newton–Raphson algorithm and
with the classical method of Golub and Welsch [18]. The Newton–Raphson fails to
calculate the zeros of the Gram polynomials even with the extremely precise initial
approximations used in WDDK. We believe that the reasons that Newton–Raphson
fails are the oscillations of the polynomial with high frequencies and large amplitudes
near the endpoints [−1, 1]. Indeed, this phenomenon causes the tangent line to the
graph of Gm(x;N) to cross the real line at a point which is too far from the zero
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Fig. 2. The absolute error in computing the zeros of G60(x;N) for N = 103 (left) and 104

(right), by the GW algorithm and the WDDK method. The black line corresponds to the value
eps/2. The points not exhibited correspond to values with all digits correct in double precision
accuracy.

Fig. 3. The maximum absolute errors in computing the zeros of Gm(x;N) for N = 103 (left)
and 104 (right), by the version of the GW algorithm, described above, and the WDDK method. The
gaps in the red line correspond to values which are correct in double precision accuracy.

which is supposed to be approximated. Therefore, the further iterations obtained by
the method may converge to another zero.

In order to compare our algorithm with GW, adapted for the Gram polynomials,
we run the latter one, implemented in a routine for FORTRAN [19]. We do so
because the analysis of Hale and Townsend [20] shows that the implementation of
GW in MATLAB has a high complexity. In all of our comparisons, the exact values
of gm,k(N) and Bm,k are considered to be those computed by this version of GW but
with quadruple precision.

Figure 2 shows the absolute errors of the results obtained by GW and WDDK for
all zeros of the Gram polynomial of degree 60 with N = 103 and 104. The WDDK
method computes all zeros with precision smaller than eps/2 in MATLAB. Here, as
usual, the floating-point relative accuracy eps is 2−52.

Figure 3 demonstrates the maximum absolute error of the results for N = 103

and 104 and 10 ≤ m ≤ 100. Observe that this error does not exceed eps/2 for the
WDDK method. Furthermore, as m grows, a slight and gradual increase occurs in
the error of the GW method.

2.3. The weights. A common way to calculate the weights of the Gaussian
quadrature is to use an explicit formula which involves the values of the corresponding
orthogonal polynomials and their derivatives at the nodes [21, p. 390, eq. (8.4.17)]).
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Fig. 4. The relative error in computing the weights of G60(x;N) for N = 103 (left) and 104

(right), by the GW algorithm and the formulae with and without derivative. The points not exhibited
correspond to values which are precise to double precision accuracy.

Applying it to (1.8), one obtains

(2.5) Bm,k =
2αm−1

Gm−1(gm,k(N);N)G′m(gm,k(N);N)
.

Another expression can be obtained using the Christoffel–Darboux formula for or-
thogonal polynomials, which, in our setting, reads as (see [21, p. 390, eq. (8.4.18)])

(2.6)
1

Bm,k
=

m−1∑
j=0

(Gj(gm,k(N);N))
2
.

We emphasize that Lether [24] verified that the corresponding formula in the case of
Gauss–Legendre quadrature is stable.

The graphs in Figure 4 show a comparison of the relative error in computing the
weights by the adapted version of GW with our algorithm, which is based on (2.5) and
(2.6), for m = 60 with N = 103 and 104. It shows that the calculation via formula
(2.6), without derivatives, turns out to be more accurate than the others. Also, it
reveals that the calculation of the weights which correspond to nodes close to the end
points ±1 is less precise, but again the use of the formula without derivatives provides
the best results.

The maximum relative error and the relative maximum one, for N = 103 and
m = 10, 11, . . . , 100, are shown in Figure 5. Comparisons, carried out with other
values of N , revealed a very similar trend for the weights. Therefore, we choose
formula (2.6) to evaluate the weights.

2.4. The quadrature. Having discussed the best choices of methods for com-
puting the nodes and the weights, we now address some additional issues concerning
the quadrature formula (1.8). If F is given explicitly in the whole interval [−1, 1],
then the values of F at gm,k(N) are known. Moreover, if F sufficiently smooth and
the norms of its derivatives are uniformly bounded in [−1, 1], then (1.8) provides very
precise results. Indeed, as was shown in [3], when F ∈ C2m[−1, 1], the error of (1.8)
depends on the norm of F (2m)(x). Here we illustrate that this feature of (1.8) persists
in the present situation when we use double precision. As is seen in Figure 6, the
error declines rapidly when m increases.

In the case when only the samples F (xj(N)) are known, in order to apply (1.8)
we need to approximate F (gm,k(N)) in terms of the data {F (xj(N))}. Smolyak’s
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Fig. 5. The maximum relative (left) and relative maximum (right) errors of calculating the
weights for N = 103, by the GW algorithm and by formulae (2.5) and (2.6).

Fig. 6. The relative error of the quadrature for F (xj) = exj (left) and F (xj) = xj sin 3xj
(right). The accuracy in double precision are attained.

Table 3
Relative error in quadrature (m = 30) using different methods to approximate F (gm,k(104))

for the data F (xj) = exj + 0.01δ104 (j). Here δN = randn(1,N) returns a vector with N normally
distributed pseudorandom numbers by MATLAB.

Method Error
Linear interpolant 8.9709e-04

Splines (4 pts.) 9.6824e-04
Splines (6 pts.) 1.0386e-03
Splines (8 pts.) 1.0550e-03
Splines (10 pts.) 1.0587e-03

lemma [26] in the theory of optimal recovery states that among all methods for re-
covery of a linear functional via a fixed set of data, there exists a linear method for
recovery (see also [4] and [7, p. 75, Lemma 5.7]). In [3] each value F (gm,k(N)) was
approximated by a local natural cubic interpolating spline. Based on a large number
of comparisons of various linear methods, we have concluded that the most efficient
one is the linear interpolation, that is, the approximation by a piecewise linear func-
tion which interpolates F at the mesh points. We call this algorithm “the linear
interpolant.” It adequately suits a large variety of data, including some generated
almost randomly. Since it is impossible to report the entire work, we show in Ta-
ble 3 only the comparison of the linear interpolant with local natural cubic spline
approximation with 4, 6, 8, and 10 points, closest to gm,k(N). We observe that the



THE CLASSICAL LEAST SQUARES APPROXIMATION A9

Fig. 7. The relative error in quadrature for F (xj) = exj + 0.01δ104 (j) (left) and F (xj) =

exj + 0.01δ105 (j) (right). The graphs show all values of m ≤ b2.5
√
Nc.

linear interpolant is of the least computational complexity because it uses only 4m
additions, 2m multiplications, and m divisions while the spline approximation with
s points uses (14s + 4)m additions, (5s + 3) multiplications, and (3s + 3)m divi-
sions.

Figure 7 shows the relative error in calculating the quadrature (1.8), performed
for different values of m, for two sets of data, both involving random fluctuations.
This kind of sample is notorious for being the worst type of data for any kind of ap-
proximation. Despite the fact that the quadrature is not accurate in double precision
any more, its error is of order roughly 10−4 compared to 10−15. Observe that the
error plateaus out beyond a relatively small value of m. Because of these observations
we choose to calculate initially the Fourier coefficients ak, defined in (1.7) via the
Gaussian quadrature (1.8) with m = min{100, b2.5

√
Nc} nodes.

In the next section we will discuss an approach for minimizing the roundoff error
which arises in calculating the Taylor coefficients of the approximating polynomial
pn(x; f). That approach requires calculating ‖f‖2N , the square of the norm of the
data, defined in (1.4), via the quadrature formula (1.8). Initially we calculate Qm(f2),
with m = min{100, b2.5

√
Nc} and the relative error

rm =
|Qm(f2)−Qm−5(f2)|

Qm(f2)
.

If rm ≤ 10−5, then we consider Qm(f2) as a precise approximation of ‖f‖2N . Other-
wise, we increase m until either rm reaches the limit 10−5 or m becomes
min{700, b2.5

√
Nc}.

Summarizing, the Gaussian type quadrature approximates very well sums with
a very large number of terms for a vast variety of data that arise in the CLSAP.
Despite some “pathological” exceptions such as the one in Example 2 in [3], where
the calculation of the Riemann zeta function turns out to be incorrect, it is a key
ingredient in constructing a very precise approximation of the polynomial pn(x; f),
which solves CLSAP.

3. The least squares approximating polynomial. There are two issues re-
garding the solution of CLSAP, namely, the evaluation of pn(x; f) at a point x and
the computation of its Maclaurin coefficients. In both cases the results are obtained
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from the representation

pn(x; f) =

n∑
k=0

ak Gk(x;N),

where the Fourier coefficients are obtained by the quadrature (1.8).
For calculating the value of pn(x; f) at a fixed point x, we invoke Clenshaw’s

algorithm [11, 13]. Since the Gram polynomials obey a three term recurrence relation
(2.1), this algorithm is very suitable because pn(x; f) is a linear combination of Gram
polynomials.

Calculating the Maclaurin coefficients of pn(x; f), that is, its representation in the
monomial basis, requires an addition theoretical tool to avoid roundoff errors caused
by multiplication. Indeed, formally we calculate cn,k in

(3.1) pn(x; f) = cn,nx
n + cn,n−1x

n−1 + · · ·+ cn,0

in the following way. First we obtain the Maclaurin coefficients bk,j in the monomial
expansion of the Gram polynomials

(3.2) Gk(x;N) = bk,kx
k + bk,k−1x

k−1 + · · ·+ bk,0, k = 0, . . . , n,

form their representation
(3.3)

Gk(x;N) = αk−1

2k
k−2∏
j=0

αj x
k +

bk/2c∑
j=1

(
2bk−1,k−1−2j −

1

αk−2
bk−2,k−2j

)
xk−2j

 ,
where k ≥ 2, G1(x;N) = 2α0x, G0(x;N) = 1 and αj are given in (2.2). The formula
(3.3) is easily obtained by induction and evaluating at zero successive derivatives of
the recurrence relation (2.1). Tests that we have performed in MATLAB confirm that
all coefficients obtained by (3.3) are accurately calculated in double precision.

Then (3.1) and (3.2) imply

pn(x; f) =

n∑
k=0

ak

k∑
j=0

bk,j x
j =

n∑
j=0

 n∑
k=j

akbk,j

xj ,

which yields

(3.4) cn,j =

n∑
k=j

akbk,j , j = 0, . . . , n.

The roundoff error occurs exactly when one performs the latter calculations. Indeed,
some of the coefficients bk,j are very large numbers, especially when the degree k of the
Gram polynomial and the value of N themselves are large. For example, the leading
coefficient b30,30 of G30(· ; 105) is equal to 8.602406331394768e+08. On the other
hand, sometimes some of the Fourier coefficients ak may be equal to zero, because
of the nature of the problem. However, when they are calculated by the quadrature
method, the numerical result is usually a very small nonzero number. That is why
relatively large roundoff errors occur. A typical example is when the samples are the
values at the mesh points xj(N) of an algebraic polynomial of a small degree, say,
s, and one performs the algorithm to calculate the best least squares approximation
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Fig. 8. The new algorithm to solve the CLSAP.

pn(x; f) of degree n larger than s. Then the coefficients ak for k = s+ 1, . . . , n must
vanish but numerically the quadrature rule produces nonzero, though very small,
numbers.

For this reason we perform a procedure which “recognizes” and discards very
small Fourier coefficients. It is inspired and justified by the Pythagorean theorem, or
equivalently, the Parseval identity for the `2 norm of the data (see [14, Chapter 1])

‖f‖2N =

N−1∑
k=0

a2k,

the obvious fact that

‖pn(·; f)‖2N =

n∑
k=0

a2k,

and the triangular inequality ‖f‖N − ‖pn(·; f)‖N ≤ ‖f − pn(·; f)‖N . We choose a
small ε, say, ε = 5(rm + 2eps) and, if

|ak|
‖f‖N

< ε

for some of ak, k = 0, . . . , n, we set ak = 0.
Then we calculate the Maclaurin coefficients cn,j via (3.4).
The whole algorithm introduced in this paper is performed according to the flow-

chart in Figure 8.

4. Comparisons and conclusions. In this section we compare our algorithm,
called the NEW one, with the STANDARD algorithm in MATLAB. The comparison
is done when NEW calculates the polynomial pn(x; f) either expanded in the Gram
basis as in (1.6), or in the basis of monomials, as in (3.1), while the STANDARD
furnishes pn(x; f) only in the form (3.1).

First we compare the performance of the algorithms when the data is taken to
be the values of an algebraic polynomial of a small degree. In Figures 9, 10, and 11
we demonstrate the results of this comparison when f(xj) = x3j − πx2j − 1 for various

values of n and N . Observe that the expansion of the polynomial f(x) = x3−πx2−1
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Fig. 9. Maximum absolute error in the coefficients (left) and the computational time (right)
when f(xj) = x3j − πx2j − 1 with N = 105.

in terms of the Gram basis, when N = 105, is

f(x) = a0 G0(x; 105) + a1 G1(x; 105) + a2 G2(x; 105) + a3 G3(x; 105),

where

a0 = −
(

1 +
3333333333π

10000000000

)
, a1 =

29999999993
√

3333333333

5000000000000000
,

a2 = −π
√

13888888881944444445

12500000000
, a3 =

57
√

10992393248472057341709537

1250000000000000
.

In Figure 9 we show the comparison for the coefficients when the samples coincide
with the values of the latter polynomial, for a fixed value of N , namely, N = 105, and
increasing values of n. The algorithm NEW is faster and has an accuracy of essentially
double precision in both bases. The error of STANDARD in these examples increases
and reaches a rank deficiency for n ≥ 31.

In Figure 10 we compare the speed of the algorithms when N and n increase
simultaneously in such a way that n = b

√
N/10c. NEW is faster in both bases.

STANDARD has a rank deficiency problem for N ≥ 105.
In Figure 11 we compare the algorithms when n = 7 and N increases. NEW

computes the coefficients with O(1) operations and is essentially accurate in double
precision.

In Figure 12 we display the residual sum of squares, defined by

RSS = ‖f − pn(·; f)‖2 =

N∑
j=1

(f(xj)− pn(xj ; f))2,

to compare the precision of the algorithms for the least squares approximation of
samples that are the values at the mesh points of the smooth function f(x) = sin(15x)
with N = 5 · 104. We use Horner’s algorithm [21, p. 28] to evaluate the polynomial
provided both by STANDARD and by our method in monomial basis. NEW uses
Clenshaw’s algorithm. The methods have approximately the same precision for all
values of n up to n = 31 when STANDARD begins to show rank deficiency. Despite
the procedure to combat the roundoff error in the calculation of the Fourier coefficients
in NEW, for some reason it appears for 35 ≤ n ≤ 40 but for n ≥ 41 the roundoff
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Fig. 10. Maximum absolute error in the coefficients for the polynomial f(xj) = x3j − πx2j − 1

with n = b
√
N/10c (left) and the computational time (right). The same polynomials f in the Gram

basis are easily computed and we omit them here.

Fig. 11. Maximum absolute error in the coefficients for f(xj) = x3j − πx2j − 1 with n = 7 (left)

and the computational time (right).

error becomes negligible again. In any case, NEW is more precise than STANDARD
for every n ≥ 32, both in the monomial and the Gram bases. Our algorithm is also
faster in each basis for every n > 1. We have observed that Horner’s algorithm is
faster than Clenshaw’s when N ≥ 5 · 104.

In Figure 13 we display the residual sum of squares and the time to calculate
the least squares approximations for slightly noisy samples with N = 3 · 104. All the
methods have around the same precision. Our algorithm is faster in both bases for
n ≥ 5.

In Tables 4 and 5 we compare STANDARD (ST) and NEW, with the use of the
Clenshaw algorithm for the Gram basis, via the RSS and the time for evaluation for
another set of noisy data, given by f(xj) = cos(20xj) + 10−8δN , for various values
of n e N . The tables show the abbreviation of the algorithm which performs better
for the specific values of n and N while the dot symbol means that they perform
equally. Further, NEW∗ means that the NEW algorithm solves the problem where
STANDARD does not work at all. In these cases attempts to run the latter result
in MATLAB messages like the following: “Requested 100000000x31 (23.1GB) array
exceeds maximum array size preference. Creation of arrays greater than this limit
may take a long time and cause MATLAB to become unresponsive.”
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Fig. 12. The residual sum of squares for the function f(xj) = sin(15xj) with N = 5 · 104 (left)
and the computation time for evaluation (right).

Fig. 13. The residual sum of squares (left) and the computation time (right) for the best

approximation of the samples f(xj) = ex
3
j + 10−7δN (j) with N = 3 · 104.

Table 4
Comparison of RSS.

N = 103 N = 104 N = 105 N = 106 N = 107 N = 108

n = 5 · · · · · ·
n = 10 · · · · · NEW∗

n = 20 · · · · · NEW∗

n = 30 ST · · NEW · NEW∗

n = 40 ST ST NEW NEW NEW NEW∗

n = 50 ST ST NEW NEW NEW NEW∗

Table 5
Comparison of the time for evaluation.

N = 103 N = 104 N = 105 N = 106 N = 107 N = 108

n = 5 ST ST NEW NEW NEW NEW
n = 10 ST · NEW NEW NEW NEW∗

n = 20 ST NEW NEW NEW NEW NEW∗

n = 30 ST NEW NEW NEW NEW NEW∗

n = 40 ST NEW NEW NEW NEW NEW∗

n = 50 ST NEW NEW NEW NEW NEW∗



THE CLASSICAL LEAST SQUARES APPROXIMATION A15

Fig. 14. The approximate solutions of CLSAP of degree 12, with N = 108, for f(xj) =
exj sin 12xj (left) and the noisy data f(xj) = exj sin 12xj + δ108 (j) (right).

Finally in Figure 14 we show our method of solving the CLSAP for a large number
of samples, N = 108, both for an explicit function and its random perturbations. The
STANDARD algorithm does not provide results because it exceeds the maximum
array size preference in MATLAB. In the second case the best approximation was
calculated via the Horner algorithm for the monomial basis because Clenshaw also
exceeded maximum array size.

The latter examples of approximation of noisy samples confirm once again, though
empirically, the observation of Demanet and Townsend [12] that “least squares poly-
nomial fitting is robust to noisy samples.”

We have performed a large number of experiments to compare the algorithms,
both in terms of precision and time, in all possible situations, depending on the
“smoothness” of the data, on the values of N and n, and on the basis we represent
when calculated by NEW and the conclusion is as follows. When the data is taken
from a process, described by a very smooth function, which is very common in practice,
NEW is faster and more accurate, both in the Gram and the monomial bases. When
the data shows some lack of smoothness or, even worse, the samples are noisy, that is,
when random perturbations are introduced, STANDARD sometimes performs better,
especially for small values of N , while NEW begins to produce more precise results
and is much faster for large values of N (see Tables 4 and 5).

It is worth mentioning that in general NEW performs much better when the ap-
proximating polynomial pn(x; f) is represented in Gram’s basis. This phenomenon
is not surprising for various reasons. Trefethen [28, Chapter 3] expresses the general
principal that “the monomial basis is familiar and comfortable, but you should never
use it for numerical work with functions on an interval” and suggests the use of the
basis of Chebyshev polynomials when one works with uniform approximation. Simi-
larly, since the Gram polynomials are the natural orthonormal basis for the CLSAP,
we do recommend their use here.

We emphasize also that, when n is fixed and N increases, our algorithm computes
the coefficients in O(1) operations. Furthermore, the evaluation of the polynomial
pn(x; f) is faster than Horner’s algorithm used with STANDARD.

All numerical computations and the comparisons have been performed by MAT-
LAB R2017b on a 2012 2.3 GHz Intel Core i7 MacBook Pro. The MATLAB codes
are available at http://clsap.dcce.ibilce.unesp.br.

http://clsap.dcce.ibilce.unesp.br
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